O Efeito Rolling Shutter

Esta semana eu estava olhando as postagens no Google+ quando vi algo que chamou a atenção. Veja ao lado. As pás da hélice do avião aparentam estar soltas no ar. Este é um tipo de distorção em filmagens feitas com câmeras digitais que utilizam sensores do tipo CMOS.
Diferente dos sensores do tipo CCD, eles não fazem a leitura da imagem de uma só vez, mas através de uma varredura, produzindo um efeito que ficou conhecido como  Rolling Shutter.
Pelo fato de as câmeras digitais estarem usando cada vez mais os dispositivos CMOS, por serem mais baratos e por gastarem até 100 vezes menos energia do que os CCD, poupando com isso as baterias, acredito que este efeito se tornará cada vez mais popular, e pode ocorrer não só nas filmagens como também nas fotografias. Veja:
Hélices de um avião que parecem ter sido amolecidas pelo calor. (fonte: Flickr)
Note que as pás do rotor do helicóptero parecem ter sido "penteadas" para trás. (fonte: Wikipedia) 
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
No caso do iPhone 4 as imagens são capturadas desde o canto superior esquerdo até ao canto inferior direito. - See more at: http://www.kerodicas.com/geral/artigo=37252/#sthash.hj57cEJb.dpuf
A varredura dos sensores CMOS pode ser feita de várias maneiras, de cima para baixo, esquerda para a direita ou, por exemplo, no caso do iPhone 4, na diagonal, desde o canto superior esquerdo até o canto inferior direito. Quando o objeto está se movimentando muito rapidamente, dependendo da frequência de rotação, no caso específico das hélices, e da frequência de varredura, surgirão ocasionalmente estas distorções. Vou usar uma animação da Wikipedia para entendermos um pouco melhor.
Nesta varredura, em 24 frames, feita na horizontal e de cima para baixo, um disco multicolorido em rotação é "filmado", ou poderia ser "fotografado" como se fosse, por exemplo, a hélice de um avião. Cada fresta corresponde a um frame, numerado de 1 a 24. Note no final a grande distorção que ocorre na imagem obtida do disco. Assim funcionam os sensores CMOS. Já nos sensores CCD não ocorre este efeito, porque a imagem é obtida como um quadro completo e de uma só vez.
O vídeo a seguir mostra bem nitidamente que esta distorção depende da frequência da filmagem. No caso, o efeito é obtido mais claramente quando a frequência da câmera chega a 4.000 frames por segundo.



Outro vídeo que também achei muito interessante, em que se nota o efeito nas lâminas, é este a seguir, de uma pessoa tocando um instrumento africano, conhecido como Kalimba.

 
Fontes:
http://www.kerodicas.com/geral/artigo=37252/
http://eletronicos.hsw.uol.com.br/questao362.htm (Comparações entre os sensores CMOS e CCD)
http://en.wikipedia.org/wiki/Rolling_shutter
Compartilhe:

Gifs animados do Google+

Um recurso da rede social Google+, que ainda não está disponível no facebook, são aquelas imagens com movimento, chamadas de gifs animados.  Alguns gifs que tive a oportunidade de ver por lá são interessantes e diria até mesmo instrutivos, bem diferentes daqueles com mensagens com bichinhos e estrelinhas piscando, na época do Orkut. Resolvi fazer aqui uma seleção de 5 gifs  bem legais que encontrei por lá.

1- Sempre na fila errada
Quem não passou algum dia por uma situação semelhante, em uma fila de banco, do tempo em que ainda não tinham inventado a fila única (ah, e pensar que fui office boy nesta época), ou nos supermercados. No caso dos supermercados, costumo dar uma rápida analisada nos tamanhos das filas dos caixas para escolher aquela que teoricamente seria a menos demorada, pela quantidade de pessoas e também pelos volumes dentro dos carrinhos. De repente, a fila que escolhi trava por qualquer motivo, quando o cartão de crédito de alguém não passa, ou o código de barras com o preço de alguma mercadoria não pode ser lido, ou sei lá. Fica difícil disfarçar a raiva que sinto de mim mesmo, vendo as outras filas, que descartei na escolha inicial, seguindo seus ritmos normalmente.
Sempre na fila errada. Moral da história: escolha uma e permaneça até o fim, não importa o que aconteça.
2- Chave e tambor
Esta animação mostra claramente o princípio de funcionamento de um tipo comum de chave com tambor. Um aluno meu até comentou no Google+, na época em que eu compartilhei este gif, que ele tinha levado um bom tempo para aprender este processo de funcionamento, com várias explicações do professor de um curso técnico, que usou desenhos, mostrando um tambor fechado. Depois que viu esta imagem, o aluno entendeu seu funcionamento facilmente. Um bom exemplo de que em certos casos, uma animação bem produzida vale mais do que muitas palavras e desenhos.
Assim fica bem fácil de entender, não?
3- Lançamento oblíquo
Uma das matérias de Física mais difíceis de serem ensinadas e aprendidas no ensino médio é o lançamento oblíquo. O movimento deve ser estudado como a decomposição de dois movimentos, um na horizontal e outro na vertical. Note na animação que o vetor componente horizontal da velocidade (seta horizontal vermelha) permanece sempre com a mesma intensidade, o que caracteriza um movimento uniforme. Já, o vetor componente vertical (seta vertical vermelha) varia sua intensidade, o que caracteriza um movimento uniformemente variado.
Vetores mostrando as componentes da velocidade facilitam a compreensão do lançamento oblíquo.
4- Ilusão de óptica
Coloque a imagem abaixo no centro da tela. Fixe seus olhos somente no ponto verde central. Esqueça os outros pontos da imagem e não deixe em nenhum momento que seus olhos se desviem do ponto verde. Veja que depois de alguns instantes os pontos amarelos parecem ter sido apagados.


5- Matemática
Este gif é para os leitores que gostam de matemática. Ele representa uma forma original de representar a operação de multiplicação, usando retas. Note que o processo para obter o resultado final é bem semelhante ao que usamos na prática, quando, por exemplo, ao fazermos a multiplicação de 123 por 25. A primeira soma dá 15, colocamos o 5 embaixo e aplicamos o famoso "vai um" que será acrescentado na soma seguinte. Achei criativo.


Compartilhe:

Game FIFA 14 e a resistência do ar

O game de futebol FIFA 14, lançado no Brasil em outubro de 2013, finalmente atualizou a programação do efeito físico da resistência do ar sobre a bola, tornando as trajetórias de seus movimentos ainda mais realistas. Em versões anteriores a bola se tornava um pouco "flutuante", subindo ao longo de um caminho linear irreal.

No ano passado, engenheiros e animadores, após uma intensa análise de todo o código físico do projétil no jogo, descobriram o problema: o coeficiente de arrasto estava errado. De acordo com o físico John Eric Goff, do Lynchburg College, "A bola se move em sua maior velocidade logo após ter saído do pé do jogador, e a resistência do ar imediatamente retarda o seu movimento até ela atingir a altura máxima. A seguir, ela aumenta a velocidade em seu caminho para baixo".

Nas versões anteriores da FIFA a bola violava as leis da física, acelerando e desacelerando a uma taxa definida não afetada pela sua velocidade inicial. De acordo com Aaron McHardy, um produtor sênior  em jogabilidade, da EA Sports, a empresa que produz a franquia FIFA, se a bola estivesse se movendo a 50 ou 80 quilômetros por hora, ela diminuía a velocidade na mesma proporção como se estivesse se movendo a 10 quilômetros por hora.

A falha no coeficiente de arrasto também tornava o efeito de spin (giro da bola) irrealista. Como a bola desvia para um lado, o chamado efeito Magnus, que eu já expliquei em um post deste blog (clique aqui se quiser ler), se este efeito for mal calculado, isto significa que a trajetória da bola não se curva com grande variabilidade. "Uma vez fixada, a bola giraria de forma adequada, e temos muito mais variedade na curva", diz McHardy . "A bola agora finalmente mergulha e desvia e faz todas essas coisas que vemos no mundo real."

Nota-se a importância do estudo da Física na compreensão de um modelo que represente o mais realisticamente possível os movimentos nos games esportivos de última geração, através de simulações que monitoram os deslocamentos dos atletas e da bola. No vídeo abaixo (infelizmente não encontrei traduzido), McHardy explica alguns avanços na programação. Eles usam os termos de marketing que denominam de Pure Shot e Real Ball Physics.  

Fonte:
http://www.scientificamerican.com/article.cfm?id=fifa-physics-how-a-video-game-figured-out-air-resistance
Compartilhe:

Os brasileiros que ajudaram Einstein

O eclipse total do Sol, ocorrido em 29 de maio de 1919, e observado no céu da cidade de Sobral, no estado de Ceará, foi usado para confirmar, com a ajuda de dois astrônomos ingleses, Andrew Crommelin Charles Davidson, juntamente com  uma equipe de colaboradores brasileiros, um fenômeno previsto na teoria proposta em 1915 por Einstein.
Os colaboradores brasileiros com os ingleses, Crommelin ( círculo vermelho)  e  Davidson (círculo azul).


A Teoria da Relatividade Geral previa que a luz, ao passar nas proximidades de um intenso campo gravitacional de um corpo massivo, sofreria um desvio em sua trajetória.
Através das fotos do eclipse daquele dia e após análises posteriores feitas por um conceituado grupo de cientistas, houve a comprovação do efeito previsto, e a partir daí, Einstein passou a desfrutar de maior credibilidade na comunidade científica, tornando-se cada vez mais reconhecido e famoso.

Problema: Como medir o desvio?
Devido às grandes dimensões exigidas para a verificação prática do desvio da trajetória da luz, Einstein imaginou que para uma comprovação experimental seria preciso obter duas fotografias, uma de um campo de estrelas atrás do corpo massivo, e outra do mesmo campo de estrelas sem a presença do corpo massivo. Comparando as duas fotografias, as estrelas vistas mais próximas da borda desse corpo deveriam apresentar uma pequena diferença de posição.
No entanto, caso o Sol fosse usado como corpo massivo, haveria uma outra dificuldade causada pela sua luminosidade, o que ofuscaria a luz das estrelas vistas próximas de sua borda, impedindo assim que elas fossem fotografadas. Diante disso, obter tais fotografias com o Sol entre as estrelas, mas sem a sua luz ofuscando-as seria possível em apenas uma única circunstância: durante um eclipse total.
Veja a figura abaixo que eu montei. A luz de uma estrela desvia-se, fazendo com que sua posição aparente, vista da Terra, seja alterada em relação à sua posição real. A Lua está posicionada exatamente na linha formada entre o Sol e o nosso planeta, definindo uma estreita região de sombra na Terra onde é possível verificar o eclipse total. No eclipse de 1919, em determinado instante do dia 29 de maio, o ponto correspondente à cidade de Sobral estaria exatamente dentro desta região.
 Desvio de um raio de luz proveniente de uma estrela, ao passar próximo ao Sol.  (Distâncias e tamanhos fora de escala) 
A comprovação
Em Julho de 1919, dois meses após o eclipse, os dois astrônomos ingleses retornaram à Sobral para fotografar o mesmo campo de estrelas, desta vez sem a presença do Sol.
O cálculo do desvio previsto por Einstein não foi um processo simples. Em todas as placas fotográficas reveladas, as estrelas não estavam suficientemente próximas do Sol. (Veja ao lado uma das imagens obtidas no Brasil). Além disso, as placas de Sobral revelaram um desvio médio de apenas 0,97 segundos de arco, o que, levando em consideração os erros de medida devido à baixa qualidade das imagens e aos efeitos de refração da atmosfera, correspondia aos valores calculados pela teoria gravitacional de Newton, e não à teoria de Einstein.

O chefe das missões que patrocinou a vinda dos astrônomos ingleses ao Brasil, e que fez parte de outra missão de observação em um outro local da Terra onde também ocorreria o eclipse total, na Ilha de Príncipe, na costa ocidental da África, era um cientista inglês que defendia entusiasticamente a Teoria da Relatividade Geral: Arthur Stanley Eddington.  
Eddington teria então privilegiado as medidas dos desvios que favoreciam a Teoria de Einstein, afirmando que todas as medidas obtidas acima do valor "newtoniano", que correspondia a 0,87 segundos de arco, somente poderiam ser explicadas pela teoria de Einstein.

No dia 6 de Novembro de 1919, Eddington divulgou os resultados, concluindo que as observações comprovavam as previsões de Einstein. A partir deste instante, a Teoria da Relatividade Geral passou a ser mais aceita, e popularizou cada vez mais a figura do seu gênio criador. Pode-se dizer que isto se deveu em parte à dedicada colaboração de alguns cientistas e astrônomos brasileiros, bem como dos anfitriões habitantes da cidade de Sobral, que muito bem acolheram e ajudaram os astrônomos ingleses na obtenção das fotos do eclipse.

Fontes:
http://www.sbfisica.org.br/fne/Vol6/Num1/eclipse.pdf
http://www.observatorio.ufmg.br/pas16.htm
Compartilhe:

O baixo rendimento dos motores à combustão

Esta semana que se passou estive procurando um carro para comprar, já que meu Fiat Palio 1.0, ano 97 já estava ficando meio gasto. Acabei comprando um modelo 1.6 da Volkswagem - o CrossFox, ano 2007 (foto).
Potência e cilindradas
As potências dos motores, no Brasil, normalmente são dadas em cv (cavalo-vapor). Um erro comum é achar que esta grandeza está associada somente ao valor das cilindradas. Um motor normal, ao longo de sua vida útil, apesar de não mudar sua cilindrada, vai ficando mais forte ou mais fraco, de acordo com o desgaste das peças.
Encontrei uma tabela comparando modelos de carros, e aproveitei para analisar alguns valores do CrossFox que comprei. A potência máxima informada é de 101 cv (gasolina), ou 103 cv (álcool), e seu peso é de 1.115 kg. Em outra tabela obtive a aceleração de 0 a 100 km/h. Lá diz que o carro realiza esta performance em 13,0 s (gasolina) ou 12,7 s (álcool).
O diâmetro de cada cilindro é D = 76,5 mm, e o curso (comprimento) é C = 86,9 mm.
A cilindrada dada na tabela é de 1.598 cm³.
Se fizermos um simples cálculo matemático do volume de cada um dos cilindros, de acordo com os valores informados, teremos:$$ \begin{equation*} \large V = \frac{ \pi . D^2}{4}. C \end{equation*}$$ Substituindo:$$ \begin{equation*} \large V = \frac{3,14 . (76,5)^2}{4}. 86,9 \end{equation*}$$que dá aproximadamente$$ \begin{equation*} \large V \simeq 399.220 mm³ \end{equation*}$$ ou $$ \begin{equation*} \large V \simeq 399,22 cm³ \end{equation*}$$ Multiplicando este valor pelos 4 cilindros, temos: $$ \begin{equation*} \large V \simeq 1.596,8 cm³ \end{equation*}$$ que é um valor bem próximo das cilindradas informadas, e que na prática pode ser arredondado para 1.600 cc (cm³). Se dividirmos por 1.000, chegamos ao termo 1.6, usado popularmente.
Outro fator importante diz respeito à eficiência dos motores. Vejam esta questão, mais uma das que caiu na prova de Promoção por Mérito, que eu fiz em setembro deste ano:
SOLUÇÃO
O Trabalho útil (W) realizado sobre o carro corresponde à variação da Energia Cinética (∆Ec). $$ \begin{equation*} \large W = \Delta Ec \end{equation*}$$ Por sua vez, a Potência útil (Pu) corresponde ao Trabalho útil por unidade de Tempo ( ∆t ) $$ \begin{equation} \large Pu = \frac { \Delta Ec}{\Delta t} \end{equation}$$ Como o carro parte do repouso, a variação da energia cinética corresponde a energia cinética final, que é dada por:$$ \begin{equation*} \large Ec = \frac {m. v^2}{2} \end{equation*}$$ onde m é a massa do carro,  e  v é a sua velocidade final. Substituindo os valores dados na questão; 
m = 1.000 kg  , e   v = 108 km/h  = 30 m/s, temos: $$ \begin{equation*} \large Ec = \frac {1.000. (30)^2}{2} \end{equation*}$$ $$ \begin{equation*} \large Ec = 450.000 J \end{equation*}$$ Substituindo este valor, e também o valor de  ∆t = 10 s, dado na questão, na equação (1) tem-se: $$ \begin{equation*} \large Pu = \frac {450.000}{10} \end{equation*}$$ $$ \begin{equation*} \large Pu = 45.000 W \end{equation*}$$
O rendimento (n)  é definido como sendo a razão entre a Potência útil (Pu) e a Potência total (Pt), esta última dada na questão, e vale 100 cv, ou 75.000 W. Portanto, o rendimento é de:$$ \begin{equation*} \large n = \frac {45.000}{75.000}  \end{equation*}$$ $$ \begin{equation*} \large n = 60\% \end{equation*}$$ A alternativa correta é a (D).

Rendimento do CrossFox
Só por curiosidade, para comparar,  vou calcular o rendimento do CrossFox, usando os dados de aceleração, peso e potência fornecidos nas tabelas, usando álcool como combustível:
m = 1.115 kg
v = 100 km/h = 27,78 m/s
∆t = 12,7 s
Pt = 103 cv = 77.250 W

Calculando a Energia Cinética, obtive 430.170 J.
Potência útil (Pu) deu 33.871,6 W.
rendimento encontrado foi de aproximadamente 43,8 %

Obs: Para comparar, eu mantive neste cálculo de rendimento do CrossFox a conversão de cv para W usada na questão, mas usando a real, que é um pouco diferente, já que 1 cv vale aproximadamente 735,5 W, teremos um rendimento de aproximadamente 44,7%

Conclusão: Apesar de todas as melhorias nos sistemas de transmissão da energia gerada nos motores à combustão, feita nos carros modernos, na média, aproximadamente a metade desta energia ainda é desperdiçada, principalmente na forma de calor e atrito. Uma boa solução seria a ampliação do uso dos carros híbridos, ou então melhorar a eficiência e capacidade de armazenamento de cargas das baterias, a fim de aumentar a circulação de carros totalmente elétricos, que também têm a grande vantagem de não liberarem gases e fumaça no ambiente.

Fontes:
Compartilhe:

Comparando as velocidades da Terra e da Lua

Nos séculos anteriores ao Renascimento, a imensa maioria das pessoas, com base em modelos elaborados e defendidos por pensadores e astrônomos, dentre os quais se destacavam os prestigiados Aristóteles e Ptolomeu, não acreditavam que a Terra pudesse estar em movimento. Para elas, seria mais lógico que o nosso planeta estivesse em repouso no centro do Universo. Assim sendo, o Sol, a Lua e os demais planetas, bem como as estrelas, estariam todos girando em torno de nós.
Antes disso, é provável que somente Aristarco, ainda na Grécia Antiga, teria deduzido outro modelo. Para ele, seria mais lógico que o Sol, por ser maior do que a Terra, deveria ocupar o centro, e sendo a Terra maior do que a Lua, esta última giraria em torno do nosso planeta. Este modelo, quase esquecido, bem mais tarde voltou a encontrar defensores, como Copérnico Galileu, e depois outros tantos, tais como Kepler e Newton, que ao contrário dos geocêntricos, passaram a acreditar na ideia de que a Terra girava em torno do Sol, o que ficou conhecido como modelo heliocêntrico.

Hoje já sabemos que a Terra não só se movimenta ao redor do Sol (translação), mas que isto se dá a uma velocidade altíssima. Além disso, temos o giro em torno dela mesma, em relação a um eixo imaginário, movimento conhecido como rotação, maior responsável por confundir os geocêntricos, pois devido a ele, o Sol é que  parece mesmo girar à nossa volta.  
Neste post vou  mostrar a diferença entre a velocidade de translação da Terra em torno do Sol, comparada à velocidade orbital da Lua em torno da Terra, através da solução de mais uma questão que caiu na prova que eu fiz, de Promoção por Mérito. Vejam:

SOLUÇÃO
Newton demonstrou que a força de atração gravitacional (F) entre dois corpos quaisquer, de massas M e m, separados por uma distância d é dada por: $$\begin{equation*}\large F = \frac{G.M.m}{d^2}\end{equation*}$$ onde G é a Constante Gravitacional Universal .  
Esta força corresponde também à força centrípeta sofrida pelo corpo de massa m, que é dada por: $$\begin{equation*}\large F = \frac{m.V^2}{d}\end{equation*}$$ Se igualarmos ambas as equações anteriores, e fizermos alguns arranjos, obteremos: $$\begin{equation} \large V = \sqrt { \frac{G.M}{d}} \end{equation}$$ onde V corresponde à velocidade do corpo em órbita.

Velocidade da Terra
Vamos ver primeiramente como fica a expressão para o cálculo da velocidade da Terra. Substituindo na equação (1): $$\begin{equation} \large V(Terra) = \sqrt { \frac{G.M(Sol)}{D}} \end{equation}$$ onde  M(Sol) é a massa do Sol, e  D é a distância Terra-Sol.
Nota-se que esta velocidade depende da massa do Sol, e independe da massa da Terra e também da massa da Lua.

Só para calcularmos o valor da velocidade da Terra, que não é pedida na questão, mas tem a ver com o título deste post, podemos substituir os dados, e usar o valor de G aproximando para:
$$\begin{equation*} \large V(Terra) \simeq \sqrt { \frac{6,7.10^{-11}.2.10^{30}}{1,5.10^{11}}} \end{equation*}$$ $$\begin{equation*} \large V(Terra) \simeq 30.000 m/s \end{equation*}$$ $$\begin{equation*} \large \textbf {V(Terra)} \simeq \textbf {108.000 km/h} \end{equation*}$$ (Se quiser, clique aqui para ver no blog parceiro, O Baricentro da Mente, do meu amigo Kleber Kilhian, como é possível chegar a um valor bem próximo deste, para a velocidade de translação da Terra, através de um caminho diferente) 

Velocidade da Lua
Agora vamos ver como fica a expressão para a velocidade da Lua em órbita da Terra. Substituindo na equação (1) obtemos:  $$\begin{equation} \large V(Lua) = \sqrt { \frac{G.M(Terra)}{d}} \end{equation}$$ onde  M(Terra) é a massa da Terra e  d é a distância Lua-Terra.

Dividindo-se a equação (2) pela equação (3) temos:
$$\begin{equation*} \large \frac {V(Terra)}{V(Lua)} = \sqrt{\frac{\frac{G. M(Sol)}{D}}{\frac {G.M(Terra)}{d}}}\end{equation*}$$ $$\begin{equation*} \large \frac {V(Terra)}{V(Lua)} = \sqrt{\frac{M(Sol).d}{M(Terra).D}}\end{equation*}$$ Substituindo os valores dados na questão: $$\begin{equation*} \large \frac {V(Terra)}{V(Lua)} \simeq \sqrt{\frac{2.10^{30}.3,8.10^8}{6.10^{24}.1,5.10^{11}}}\end{equation*}$$ Fazendo as aproximações da raiz quadrada temos: $$\begin{equation*} \large \frac{V(Terra)}{V(Lua)} \simeq 29,06 \end{equation*}$$ ou $$\begin{equation*} \large V(Terra) \simeq 29. V(Lua) \end{equation*}$$
Portanto, a resposta correta da questão é a alternativa (C)

A velocidade da Lua em torno da Terra seria portanto de "apenas" cerca de 3.700 km/h. Observando o nosso único e belo satélite natural em uma noite de Lua cheia, não dá para imaginar que ele está se movimentando com velocidade tão alta.
Compartilhe:

Teoria da Relatividade e contração do espaço

A Teoria Especial da Relatividade, ou Teoria da Relatividade Restrita, foi publicada por Einstein, em 1905. Ela recebe a qualificação de restrita porque trata apenas dos sistemas em que não são considerados os campos gravitacionais. Foi um prenúncio da Teoria Geral da Relatividade, publicada em 1915, em que são acrescentados os efeitos destes campos. 
Um entendimento razoável pode ser obtido pelos alunos ainda no Ensino Médio, para que tenham uma noção sobre a alteração na percepção do tempo e do espaço, quando tratamos de velocidades muito altas, próximas à velocidade da luz.
No caso do espaço, em uma experiência por enquanto imaginária, se uma pessoa estivesse dentro de uma nave a uma velocidade muito alta (v), próxima à velocidade da luz (c), veria os objetos de fora da nave com um comprimento (l) menor do que o real (L). A equação para o cálculo é dada por: $$\begin{equation}\large l = L. \sqrt{1- \frac{ v^2}{c^2}} \end{equation}$$ Vou exemplificar com uma questão:
SOLUÇÃO
Como é dito que a velocidade da nave é 80% da velocidade da luz, temos: $$\begin{equation*}\large v = 0,8.c\end{equation*}$$ Substituindo na equação (1): $$\begin{equation*}\large l = 5,0. \sqrt{1- \frac{(0,8.c)^2}{c^2}} \end{equation*}$$ $$\begin{equation*}\large l = 5,0. \sqrt{1- \frac{8^2}{10^2}} \end{equation*}$$ $$\begin{equation*}\large l = 5,0. \sqrt{1- \frac{64}{100}} \end{equation*}$$ $$\begin{equation*}\large l = 5,0. \sqrt{\frac{100 - 64}{100}} \end{equation*}$$ $$\begin{equation*}\large l = 5,0. \sqrt{\frac{36}{100}} \end{equation*}$$ $$\begin{equation*}\large l = 5,0. {\frac{6}{10}} \end{equation*}$$ $$\begin{equation*}\large l = \frac{30}{10} \end{equation*}$$  $$\begin{equation*}\large l = 3,0 km \end{equation*}$$ A resposta correta é a alternativa (B).

Fontes:

Tópicos de Física Moderna - Dulcídio Braz Júnior
http://pt.wikipedia.org/wiki/Relatividade_Restrita
Compartilhe:

Questão de Física da prova de meritocracia

Eu já coloquei aqui uma questão que caiu na prova que fiz de Promoção por Mérito. Vejam a resolução que elaborei de outra questão:


SOLUÇÃO

Este é um exemplo de questão envolvendo várias partes da Física. A parte de Eletricidade, na relação entre campo e tensão, a parte de Dinâmica, envolvendo força e aceleração, e a parte de Cinemática no que se refere às velocidades e alcance da partícula. Vou iniciar pelas equações da eletricidade.
Duas placas paralelas, uma carregada com carga positiva e outra negativa, quando separas por uma distância d, geram um campo elétrico E (figura). A relação entre a ddp (tensão) U entre elas, e o campo elétrico é dada por: $$\begin{equation}\large U = E.d\end{equation}$$ Ao mesmo tempo sabe-se que uma partícula carregada com carga q,  quando lançada no interior de um campo elétrico, estará sujeita a uma força F, que é dada por: $$\begin{equation*}\large F = E.q\end{equation*}$$ então $$\begin{equation}\large E = \frac{F}{q}\end{equation}$$ Substituindo (2) em (1): $$\begin{equation}\large U = \frac{F.d}{q}\end{equation}$$ Pela 2ª Lei de Newton, temos que: $$\begin{equation}\large F = m.a\end{equation}$$ Substituindo (4) em (3): $$\begin{equation}\large U = \frac{m.a.d}{q}\end{equation}$$ Tendo sido o lançamento feito na direção perpendicular à direção do campo, o movimento dos elétrons se comporta como se fosse o de um lançamento horizontal, sendo que podemos substituir neste caso a aceleração da gravidade g pela aceleração originada devido à força elétrica F, que é a única força agindo nas partículas, atuando na mesma direção do campo, com sentido contrário ao dele (elétrons têm carga negativa).
O alcance x pode ser obtido pelas aplicações das equações do lançamento horizontal. Na direção de x usamos a equação do Movimento Uniforme (MU). $$\begin{equation*}\large \bigtriangleup S = V.t\end{equation*}$$ No caso da questão fica: $$\begin{equation*}\large x = Vo.t\end{equation*}$$ então $$\begin{equation}\large t = \frac{x}{Vo}\end{equation}$$
Na direção de d usamos a equação do Movimento Uniformemente Variado (MUV). $$\begin{equation*}\large \bigtriangleup S = Vo.t + \frac{a.t^2}{2}\end{equation*}$$ A componente da velocidade inicial, nesta direção, é nula (Vo = 0), e a distância percorrida (que corresponde à altura no caso do lançamento horizontal) é d/2, pois é informado na questão que os elétrons são lançados de um ponto correspondente à metade da distância entre as placas. Deste modo, obtemos: $$\begin{equation*}\large \frac{d}{2} = \frac{a.t^2}{2}\end{equation*}$$ então $$\begin{equation}\large d = a.t^2\end{equation}$$ Substituindo a expressão de t  da equação (6) na equação (7),teremos:  $$\begin{equation*}\large d = a.(\frac{x}{Vo})^2 \end{equation*}$$ então $$\begin{equation*}\large d = a.\frac{x^2}{Vo^2} \end{equation*}$$ Isolando a aceleração (a) $$\begin{equation}\large a = \frac{d.Vo^2}{x^2} \end{equation}$$ e substituindo esta expressão (8) na equação (5): $$\begin{equation*}\large U = \frac{m.d.Vo^2. d}{x^2.q}\end{equation*}$$ então $$\begin{equation*}\large U = \frac{m.d^2.Vo^2}{x^2.q}\end{equation*}$$ Isolando Vo²: $$\begin{equation*}\large Vo^2 = \frac{U.q.x^2}{m.d^2}\end{equation*}$$ E finalmente: $$\begin{equation*}\large Vo = \frac{x}{d}. \sqrt{\frac{U.q}{m}}\end{equation*}$$
A resposta é a alternativa (B).
Compartilhe:

Aplicações criativas para os espelhos planos

O meu amigo Kleber sugeriu-me, através do facebook, um video muito interessante sobre uma região da Noruega que passou a usar espelhos instalados em cima de uma montanha para iluminar a praça central da cidade de Rjukan, situada em um vale, e que durante o inverno que lá se estende de setembro a março, ficava todos estes meses sem receber a luz do Sol. Clique aqui se quiser assistir o video.

Por coincidência, no mesmo dia eu havia acabado de assistir com minha filha o filme The Host (A Hospedeira) na TV. O filme trata de uns seres alienígenas que invadem a Terra e tentam "domesticar" os últimos remanescentes humanos ainda não dominados por eles, que estão refugiados e vivem escondidos em uma caverna das montanhas de um deserto dos EUA.
Nestas cavernas, estes humanos conseguem criar um sistema de iluminação artificial que funciona com a ajuda de vários espelhos planos colocados em uma grande abertura no teto da caverna (foto), que refletem e iluminam o interior, permitindo que cultivem trigo, usado na produção de alimentos. Como tinha sido minha filha de 13 anos que havia escolhido o filme, achei que seria para adolescentes, mas me surpreendi e acabei gostando da história. Em uma das cenas, a alienígena caçadora, que persegue os humanos implacavelmente do começo ao fim, passa com um helicóptero sobre a região das montanhas onde eles estão escondidos. Dentro da caverna, ao perceberem a aproximação do helicóptero, eles imediatamente correm para acionar manualmente um sistema de cabos que giram os espelhos para esconder o seu brilho e evitar que sejam vistos pela caçadora. Veja a cena:  
    

Já escrevi aqui sobre o poder de fogo dos espelhos côncavos, e então achei legal colocar também no blog estas aplicações interessantes dos espelhos planos. Aproveito para recomendar aos leitores o filme A Hospedeira.
Compartilhe:

Aplicações das Leis de Newton: a vantagem de um método alternativo

Para complementar minha renda, já que não recebo o suficiente para viver como eu gostaria, apenas trabalhando como professor de escola pública do Estado de São Paulo, tenho dado muitas aulas particulares de Física para alunos de diversas escolas particulares de Piracicaba. 
Em uma destas aulas, uma aluna me pediu para que eu ensinasse como resolver problemas envolvendo aplicações das Leis de Newton, pois ela havia comentado comigo que a maioria da classe não estava entendendo a maneira como o professor deles ensinava. Vejamos o exemplo seguinte:

Dois blocos A e B, de massas respectivamente iguais a 3 kg e 2 kg, são empurrados por uma força  horizontal F de módulo 10 N, com mostra a figura. Desprezam-se os atritos entre a superfície da mesa e os blocos, e também a resistência do ar. Determinar:
 
a) a aceleração adquirida pelos blocos;
b) a força que o bloco A exerce sobre o bloco B.


O professor ensinou os alunos corretamente, de uma única maneira. Primeiramente são montados os diagramas de corpo livre para cada bloco e indicam-se as forças envolvidas. Assim:
Nestes diagramas, P representa o peso de cada bloco, N representa a força exercida sobre os blocos pela superfície, também conhecida como Normal. Na figura, f  representa a força que o bloco A exerce sobre o bloco B, que é a força que se quer encontrar, e que tem a mesma intensidade da reação do bloco B sobre o bloco A (3ª Lei de Newton).
Aplica-se a 2ª Lei de Newton (Fr = m. a) individualmente para cada bloco, considerando-se somente as forças na direção horizontal, já que as forças na direção vertical ( P e N) se anulam. Desta maneira as equações ficam:

1) para o bloco A :
F - f = mA . a
10 - f = 3 . a       (1)
2) para o bloco B :
f = mB . a
f = 2 . a        (2) 
  
Substituindo a equação (2) na equação (1) tem-se:
10 - 2 . a  = 3 . a
10 = 3 . a + 2 . a
10 = 5 . a
a = 2 m/s²
Substituindo-se este valor na equação (2) tem-se:
f = 2 . 2 
f = 4 N 
Método alternativo
Para calcular a aceleração, eu prefiro usar um tipo de solução que considero mais fácil para os alunos entenderem, e foi a maneira que eu escolhi para ensinar a aluna. 
Pode-se aplicar a 2ª Lei de Newton para os dois blocos, como se eles representassem um sistema de massa 5 kg (3 kg + 2 kg). As forças f de contato neste caso, são consideradas forças internas ao sistema, e como atuam em sentidos contrários, elas se anulam. Então temos:

1) para o sistema:
F = (mA + mB) . a
F = (3+2). a
10 = 5 . a
a = 2 m/s² 

2) para o bloco B:
f = mB . a
f = 2 . 2
f = 4 N

Quando eu mostrei à aluna que qualquer problema deste tipo, inclusive envolvendo forças de atrito, podem ser resolvidos também desta maneira, ela achou mais fácil, porém ficou preocupada se o seu professor iria considerar correta a questão resolvida daquela maneira, na prova que ela iria fazer. Eu disse então a ela que conversasse com ele, e na aula seguinte, fiquei surpreso ao saber que o professor havia dito que da maneira como eu havia ensinado, os resultados obtidos teriam sido uma coincidência, e aquele método escolhido por mim, ele não recomendaria que fosse usado nas provas dele. Até agora não consegui entender porque o professor teria restringido os alunos dele a aplicarem um só método.
Imagine, por exemplo, que haja uma fileira com muitos carrinhos de supermercado sendo empurrados por uma única força externa aplicada no primeiro. Se for pedida a força que o penúltimo carrinho exerce sobre o último da frente, os alunos dele poderiam pensar em montar desnecessariamente várias equações com inúmeras incógnitas para que pudessem calcular primeiramente a aceleração, e aqueles que optassem pelo outro método chegariam à resposta muito mais rapidamente. Veja este exemplo:

Um conjunto de blocos de massa 4 kg cada um, é puxado por uma força F = 14 N. Despreze os atritos e determine a força de tração na última corda.


1º método:
F  - T1 = 4 a
T1 - T2 = 4 a
T2 - T3 = 4 a 
T3 - T4 = 4 a 
T4 - T5 = 4 a
T5 - T6 = 4 a
T6 = 4 a
_________
F = 28 a
14 = 28 a
a = 0,5 m/s²

T6 = 4 . 0,5 = 2 N

2º método (alternativo): 
Considerando todo o sistema:
F = (4 + 4 + 4 + 4 + 4 + 4 + 4 ). a
14 = 28 . a
a = 0,5 m/s² 

T6 = 4 . 0,5 = 2 N
Compartilhe: